

How to read the MEG Ai1600T PCIE's report

This document presents a detailed overview of the performance and reliability testing conducted on the MEG Ai1600T PCIE5 power supply unit. The report outlines the purpose and methodology for each testing parameter.

OVER POWER PROTECTION

This test determines whether the PSU can automatically activate its protection mechanisms when the load exceeds its rated power, preventing damage to GPU and others.

- OPP value too low : Power protection mechanisms activate too early.
- OPP value too high : The risk of damage to other components rises.

Find the test name "Over Power Protection", the red mark is the spec of OPP value, the test result value please find the blue mark.

For example : The protection mechanism will be activated if the wattage exceeds the OPP value of 2023.

RIPPLE NOISE LEVEL

This test ensures the PSU's output voltage remains stable, preventing issues that could affect system stability and hardware longevity. Prolonged exposure to high ripple noise can shorten the lifespan of GPU, CPU and power supply capacitors.

STEP.17(UUT 7 Vin Fin	Fest seq.17) : (V)= 115.00 (Hz)= 60.00	Static & 0 0	Noise Tes	t((115Vac) 12VMax Loa	d Voltage P <i>l</i>	:== .SS
Load Name	Loading (A/Ohm/V)	Vout Max	Vout Min	Vout (V)	Vpp Noise Max (mV)	Vpp Noise Min (mV)	Vpp Noise (mV)
12¥1 12¥2 12¥3 12¥4 3.3¥ 5¥ 5¥ 5¥SB -12¥	46.660 46.660 20.000 20.000 0.000 0.000 0.000 0.000 0.000	12.600 12.600 12.600 12.600 3.460 5.250 5.250 -13.200	11.400 11.400 11.400 11.400 3.140 4.750 4.750 -10.800	12.023 12.034 12.057 11.972 3.349 5.099 5.054 -11.937	50.000 50.000 50.000 50.000 30.000 30.000 30.000 80.000	$\begin{array}{c} 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.000\\ 0.010\\ 0.010\end{array}$	17.260 16.390 15.810 15.050 4.590 6.140 5.040 12.390

Spec Value

Testing Value

How to Read the Table

Find the test name "Static & Noise Test", the red mark is the spec value of MEG Ai1600T PCIE5, the blue mark is the actual testing result.

For example : 12V1 actual value is 17.26 mV < 50 mV

POWER-ON TIME (T1)

When a computer exits standby mode and restarts, the PSU must quickly switch to full-power output.

- T1 time too long: computer's wake-up process may feel slow.
- T1 time too short: cause to awake up system abnormality.

INTEL ATX 3.1 Spec for Power Supply

	Description	Legacy Timings	Required	Recommended
T1	Power-on time	< 500ms	< 200ms	< 150ms

STEP.18(UVT Vin Fin	Test seq.18) : (V)= 115.00 (Hz)= 60.00	Extra Timi	ng Test(Ton		(4'719) 	PA	== SS	
Load Name	Loading (A/V/Ohm)	ExtTime Max	ExtTime Min	ExtTime (ms)				
12\1	41.300	150.00	 *******	96.81				
12∀2 12∀3	41.300 20.000	150.00 150.00	******** *******	96.80 96.80				
12⊽4 3.3V	20.000 13.290	150.00 150.00	******** ******	96.83 110.22				
5V 5VSB	13.290 2.970	150.00 ******	******** *******	107.81				Spec Val
-121	0.300	150.00	****	94.71				
								lesting V

How to Read the Table

Find the test name "Extra Timing Test", the red mark is the spec value, the blue mark is the actual testing result.

For example :

12V1 actual value is 96.81 ms < Intel recommended value: 150 ms

• The value lower is better.

HOLD-UP TIME

This test evaluates the PSU by measuring how long the output voltage remains after the power input is cut off.

• T5 time higher: Power supply can stay longer during input is cut off.

INTEL ATX 3.1 Spec for Power Supply

	Description	Legacy Timings	Required	Recommended
T 5	Hold-up time	-	> 11 ms³	> 16ms ⁴

Find the test name "Hold Up & Sequence Test", the red mark is the spec value of MEG Ai1600T PCIE5, the blue mark is the actual testing result.

For example : 12V1 actual value is 19.84 ms⁴ > Intel required value : 16 ms

• The value lower is better.

EFFICIENCY TEST

This test ensures the PSU meets energy-saving standards (e.g., 80 PLUS certification) while delivering stable performance.

• High-efficiency: minimize energy waste.

🛓 80 PLUS Titanium Definition

Load : 20% Efficiency : > 92%

Load : 50% Efficiency : > 94% Load : 100% Efficiency : > 90%

STEP.20(V Vin Fin	====== VT Tes (H	t seq.20) : V)= 115. z)= 60.	: Input/out) .00 .00	put With N	oise Test	((115Vac) 50	======================================	== SS
Load Name		Loading (A/Ohm/V)	Vout Max	Vout Min	Vout (V)	Vpp Noise Max (mV)	Vpp Noise Min (mV)	Vpp Noise (mV)
12¥1 12¥2 12¥3 12¥4 3.3¥ 5¥ 5¥ 5¥ 5¥ 5¥ 5¥ 5¥ 5¥		15.330 15.330 15.330 15.330 6.650 6.650 1.480 0.150	12.360 12.360 12.360 12.360 3.400 5.150 5.150 -12.960	11.640 11.640 11.640 11.640 3.200 4.850 4.850 -11.040	12.042 12.047 12.039 11.973 3.322 5.066 5.060 -11.930	50.000 50.000 50.000 50.000 30.000 30.000 30.000 80.000	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000 0.010	15.770 15.110 15.090 14.950 3.170 3.810 3.640 11.910
		Max	Min	Reading				
PF (Eff	0~1) (%)	1.0000 99.00	0.9500 94.00	0.9984 94.36				
						Spec	Value	Testing Value

How to Read the Table

Find the test name "Input/output with noise test", show the power supply under 20%/ 50%/ 100% load testing result of "Efficiency Test", please find the highlighted in the blue mark, content show the efficiency under 20%/ 50%/ 100% loading.

For example : Under 50 % load, actual value is 94.36% > spec value 94%

CROSS LOAD TEST

To simulate the actual load of the computer during gaming or computationally intensive tasks, confirming the PSU's ability to provide stable output.

======================================	Test seq.22) : (Ψ)= 90.00 (Ψ)= 115.00 (Ψ)= 132.00	Combine Re Fin Fin Fin Fin	gulation Test((-1 (Hz)= -2 (Hz)= -3 (Hz)=	90V-115V- 47.00 60.00 60.00	======================================	ad PASS		
Load Name	Loading-1 (A/Ohm/V)	Loading-2 (A/Ohm/V)	Loading-3 (∆/Ohm/∀)	Vout Max	Vout Min	Vout-1 (V)	Vout-2 (V)	Vout-2 (V)
12V1 12V2 12V3 12V4 3.3V 5V 5VSB -12V	15.330 15.330 15.330 15.330 6.650 6.650 1.480 0.150	6.130 6.130 6.130 6.130 2.660 2.660 0.590 0.060	41.300 41.300 20.000 13.290 13.290 2.970 0.300	12.360 12.360 12.360 12.360 3.400 5.150 5.150 -12.960	11.640 11.640 11.640 11.640 3.200 4.850 4.850 -11.040	12.040 12.044 12.036 11.971 3.322 5.066 5.059 -11.932	12.030 12.031 12.029 12.003 3.314 5.062 5.057 -11.934	12.030 12.040 12.056 11.971 3.337 5.074 5.062 -11.927

Testing Value

How to Read the Table

Find the test name "Combine Regulation Test", show the testing result of power supply output under low/medium/heavy loading, no matter under which situation, The differences in the baseline values are under Intel spec.

For example : (12.04-12)/12=0.0033, 0.0033 x 100 = 0.3%

